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ABSTRACT

This is a program report which describes the formulation and employment of a com-
puter code designed to simulate the directional solidification of lead-rich Pb-Sn alloys in
the form of an ingot with a uniform and circular cross-section. In this program report,
the formulation is for steady-state solidification in which convection in the all-liquid zone
is ignored. Particular attention has been given to designing a code to simulate the effect
of a subtle variation of temperature in the radial direction. This is important because a
very small temperature difference between the center and the surface of the ingot (e.g.,
less than 0.5 °C) is enough to cause substantial convection within the mushy-zone when

the solidification rate is approximately 10—2 to 10~% cm-s~!.
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LIST OF SYMBOLS

Subscript
¢ r-direction.
g . z-direction.
L : interdendritic liquid.
s . solid
g : eutectic.
;7 + mesh point (4, 7).
o : reference.
1, 2 : indices for metal components 1 and 2 in a binary alloy, respectively.
1y 2y ..., o - indices for nine nodes.
SuperScript
(n) : iteration counter.
* : solid/liquid interface.
Others
—: average.

. vector.

a,b: geometry of solid/liquid zone (dimensionless).
ay, 81, %1, C; : constants in equations.
Ct,Cs,Cg,C% : compositions in weight percent Sn of the interdendritic liquid, final solid, eu-
tectic, and the solid at the solid/liquid interface, respectively.
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Cr1,CL3 : concentrations of components 1 and 2 in the interdendritic liquid, respectively
(wt. pet.).
Cys : average composition of the partially solidified solid.

Cs1,Csa : concentrations of components 1 and 2 in the solid phase, respectively (wt. pct.).
Cp : average solute concentration per unit volume defined by Cp = Csps + Crpr.
e(®) : residual in the (n)th iteration step.

f : a function.
g : gravity vector.
gL, 9s,9E : volume fractions of the liquid, solid and eutectic, respectively.
gry gz : gravity components in the r- and g-directions, respectively (cm - 8=3).
Hi, H, : enthalpy densities of the interdendritic liquid and solid, respectively (Joule -
g~').
hy,ha,..., ko : distance to a node from a reference node in the r-direction on the global r-z
plane.
K : permeability (cm?).

ki,k3,...,ko : distance to a node from a reference node in the z-direction on the global r-z

plane.
L : entalpy difference defined by H; — H,.
P : pressure (dyne-cm~3).
P, : pressure at the reference point, i.e. the intersection of the liquidus isotherm
and the centerline of the cylindrical ingot.
P : modified pressure defined by P =P — P, — prg, (z — z1,).
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Qi,Q, : enthalpies of the interdendritic liquid and solid, respectively {Joule - g~1).
R : radius of the cylindrical ingot (cm).
r,z : distances in the r- and z-directions in a moving coordinate system, respectively.
(r;,2;) : coordinate of node i in the r-z global plane.
(ri.5,2i,5) : coordinate of mesh point (i,j).
r',2' : r and z in the stationary coordinate system, respectively.
T : temperature (°C).
t: time (s).
W : solidification velocity (cm - s~1).
ur,u; : solidification velocity components in the r- g-directions, respectively (cm-s=1).
V: velocity vector of the interdendritic liquid.
V:,V; : interdendritic liquid velocity components in the r- and z-directions, respectively
(cm-s~1).
W : velocity of the moving coordinate system (cm-s1).
wy,w; : velocity components of the moving coordinate system {(cm-s~1).
zr,2r : % coordinates of the liquidus and eutectic isotherms, respectively.
ZLo : % coordinate of the reference point, i.e. the inte-rsection of the liquidus isotherm
and the centerline of the cylindrical inéot.
ay,Qq,...,09 : distance to a node from a reference node in the r-direction on the local @ — 8
plane.
ar, Br, @z, 0z : grouped variables.
B1,Pa,-..,P9 : distance to a node from a reference node in the z-direction on the local a - g
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plane.
| & : thermal conductivity (watt - cm™! - °C™1).
KL1,Kr3 ¢ thermal conductivities of the pure liquid metals 1 and 2, respectively (watt -
cm~!.°C™1).
Ks1,Ks3 : thermal conductivities of the pure solid metals 1 and 2, respectively (watt -
cm~!.°C™1).
B : viscosity of the interdendritic liquid (poise).
P : average density defined by 7 = psgs + proz.-
pL,ps : densities of the interdendritic liquid and solid, respectively (g - cm™2).
PLo : density of the liquid at the liquidus isotherm (g - cm—2).
psE, pLE * densities of the liquid and solid of the eutectic composition, respectively (g -

cm™3).
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1 INTRODUCTION

This report describes the numerical formulation of a model for the vertical solidifica-
tion of a binary alloy in a cylindrical mold. This is a preliminary model in that so-called
®gteady-state® solidification is tested. In the final version, the code will be able to treat
a mushy zone that changes with time. The major goal is the estimation of macrosegrega-
tion in the cast structure of small ingots, which solidify slowly (less than 0.01 cm - 3;1).
Calculations are performed for the solid/liquid zone formed between the liquid and solid
regions. Convection in liquid region is neglected, and the flow of interdendritic liquid in
the solid /liquid zone is modelled as flow through a porous medium. This flow is induced
by gravity and solidification contractions (or expansions).

The temperature field in the zone affects physic.a.l properties and the fraction of inter-
dendritic liquid. In order to solve for temperature, the energy equation takes account of
the latent heat of freezing during eolidification. The flow of the interdendritic liquid sat-
isfies the constraint of the heat flow for steady-state solidification, and then the resulting
macrosegregation in the radial direction of cylindrical ingot is computed by averaging the
concentrations of primary and eutectic solids.

For a predefined computation zone a generalized finite difference method is eiployed
to obtain a numerical solution of the equations. Nonplanar boundaries corresponding to

the top and bottom of the solid/liquid zone are considered so that the effect of a subtle

radial temperature gradient on macrosegregation can be simulated.

2 PROBLEM STATEMENT

Fig. 1 shows an ingot of a binary alloy undergoing vertical solidification. Most of
1



the heat conduction is in the negative z-direction with a very small radial component.
Gravity is in the negative z-direction as shown, with no component in the radial direction.
It is assumed that dendritic freezing takes place within the mushy zone, which moves
upward with a constant velocity. The shape of the eutectic and liquidus isotherms can
be flat, convex or concave. The concentrations of solute in the liquid and solid, Cy, and
Cs, vary in the sone. The convection of the interdendritic liquid driven by shrinkage
and gravity, causes nonuniformities in the final average composition, Cg; this is known
as macrosegregation. The effects of shrinkage were first studied by Flemings and Nereo
(1], and later both shrinkage and gravity were considered by several, including Maples and
Poirier [2], in the analysis of macrosegregation.

The mold shown in Fig. 1 is symmetric about the centerline, and in a steady-state so-
lidification, the geometry of the mushy zone, the teniperature distribution, and the velocity
field, are all constant in time. Because steady-state solidification is considered, macroseg-
regation is absent in the z-direction, and macrosegregation in terms of the composition,
Cg, is only a function of radius across the ingot. Necessary data for computation are:
1) liquid density as a function of temperature; 2) solid density; 3) the phase diagram for
the binary alloy; 4) the permeability for flow of interdendritic liquid; 5) velocity of the
solid/liquid zone; and 6) the geometry of the zone. Temperatures and velocity fields are

calculated and then macrosegregation is obtained from these results.

3 CONSERVATION AND FLOW EQUATIONS

The flow of interdendritic liquid through the mushy zone is governed by the principles
of conservation of mass, solute, momentum and energy. The solution to the conservation

2



equations requires extensive computations; however, these equations can be simplified
without losing accuracy for the macrosegregation problem of our interest. Fig. 2 illustrates
the derivation of the simplified equations. The equation for the momentum conservation
is replaced by D’Arcy’s Law, which describes the flow of the interdendritic liquid through
a porous medium. Hubbert[3] proved that D’Arcy’s is valid when the flow velocity is
low such that inertial forces are negligible compared with those arising from viscosity.
A combination of this equation with mass conservation results in the pressure equation.
Other combinatioﬁs of the energy and solute conservations with the mass conservation

lead to a simplified energy equation and the solute redistribution equation, respectively.

This formulation is effective in reducing the computational effort required for calcula-
tion of macrosegregation. The variables to be computed are pressure (P), velocities in the
r- and g-directions (V,, V;), volume fraction liquid ( QL), and the temperature (T'). Starting
from a initial guess of these values, the variables are updated as indicated in Fig. 2. The
curved arrows pointing to the equations indicate the order of the updating process. When
the computed pressure is sufficientlt accurate, the iteration is terminated. The derivation

of the equations enclosed by circles in Fig. 2 are described in this section.

Following Flemings and Nereo (1], the assumptions used in deriving the equations are

summarized below:
a) no movement of solid,
b) no flux by diffusion in the liquid in the direction of the thermal gradient,
c) constant solid density,

d) no pore formation, and



e) no diffusion of solute in solid.

3.1 Mass Conservation.

By taking account of the convection of liquid, the mass conservation is

%Zt-’ =~V (oo V) (3.1.1)
where
P=psgs +pLIL . (3.1.2)
H porosity is not formed, we have
gs +9r =1 (3.1.3)
and
3aits + %g{i =0 (3.1.4)

By inserting Eqs. (3.1.2) through (3.1.4) into Eq. (3.1.1), we obtain

a 0
~V (o2 V) = (o1 - ps) agtr, +9L ;{' .

(3.1.5)

3.2 Local Solute Redistribution.
The local solute redistribution was first derived by Flemings and Nereo [1]. Some
steps omitted in the dérivation are resolved in the derivation shown below.

Similar to Eq. (3.1.1) conservation of solute is

.%_T’;.’_’ =-V-(CLorg V) (3.2.1)

where

Cp=C,psgs +CrpLyrL . (3.2.2)
4



Expanding the right hand side of Eq. (3.2.1) we have

aCp
3_tp =-CLV- (pLgLv) - pLgLv -VC, (3.2.3)

_and substitution of Eq. (3.1.1) gives

aCp d
—pLYL V. VCL = _at_p - CL—a—? . (3.2.4)

The first derivative term on the right hand side of Eq. (3.2.4) is rewritten

| aCp _ 8Csgs

0 ac
Bt P +CL pLgL+PL9L——L

ot ot

(3.2.5)

by substituting Eq. (3.2.2) for Cp and expanding into several terms. By replacing the pr g,
in the second term of the right hand side of this equation with (7 — psgs) and rearranging,

we obtain

8Cp  0Csgs dpsgs aCr
gt ~PsTar O ‘e (32.6)

Substitution of this expression into the first derivative term on the right hand side of Eq.

(3.2.4) gives

8Cs. 0 8 oc
—pLIL V.ve = ps—asTgs- + CLE%, - CL—%’{E +PLgLa_tL . (3.2.7)

Let’s consider rewriting the first term in this equation. The average solid composition,
Cs,is
co=1 [ cya (3.2.8)
8= s Jo S gs ol

where C§ is the solid concentration at the solid-liquid interface. According to Leibnitzs’
rule,

d(Csgs) _ [* 8C3 . 9gs
dt = / ngs + Cs_ét_ ' (3.2.9)

5



and according to Fick’s second law of diffusion, the change in C§ at a fixed location is

expressed with
aCs _ p 22Cs

== (3.2.10)

where Dyg is the diffusion coefficient of the solute in the solid. If the diffusion of the solute
in solid is neglected (Ds = 0), Eq. (3.2.9) becomes

dCsgs _

= C3 995 (3.2.11)

ot

Note that Cs and gs are functions of time and space. With respect to a stationary

coordinate, following relations are valid:

dc;i 95 _ aZ;;tgs , (3:2.12)
and
ddits = %é’ti . (3.2.13)
Thus Eq. (3.2.11) is reduced to
aC;;tgs =C Bagts : (3.2.14)

Flemings and Nereo [1] presented this equation without showing the steps given above. By

substituting Eqs. (3.2.9) and (3.2.14) into Eq. (3.2.13), we obtain

..._.=___-—1—Tf’-vcf,+aa% (3.2.15)

where k is the equilibrium partition ratio, defined by k = C%/Cy. Equation (3.2.15)
is known as the ”solute redistribution equation®, and it relates the dependency of the
volume fraction liquid on the solute concentration and the velocity of the interdendritic
liquid. The values of py, ps and k are functions of temperature and hence of Cy,.

6



3.3 Pressure Equation.

The flow of the interdendritic liquid is expressed with D’Arcy’s Law; hence

K -
V= VP -n7) (3.3.1)

where p is the viscosity of the liquid and K is the permeability of the dendritic network. If

the pressure is considered with reference to atmospheric pressure and the density of liquid

at the liquidus isotherm, we define P with
P=pP-p — PLo9z(Z = ZLo) — PLoGrT (3.3.2)
then Eq. (3.3.1) can be rewritten
- ___[vp-(p,,'- pz,o)v*] (333)

The two velocity components, V; and V;, in cylindrical coordinate system are given by:

= - F{;; [g —(pL - PLo)gr] (3:3.9)
and
V=22 [%—(m—m)gz] (33.5)

where K, and K are the permeabilities in the r- and z-directions, respectively, and g, and

g5 are zero and —g, respectively, for vertical solidification.

In cylindrical coordinates the left hand side of Eq. (3.1.5) is

18 0 V.
-V (oo V) =-= (pléiLVr) - (pzég: 2 (3.3.6)

7




and substitution of Eqs. (3.3.4) and (3.3.5) into Eq. (3.3.6) leads to the pressure equation,

which is
a?P 3a,. 33p aa, op
o3 ( ) @37 ¥ 57 3z (3.3.7)
a i fv da
=(pr - Ps) gL +9z gf + ( aﬁz -PLoa_;‘) 9z
where

ar = KLpI‘ ,
Br=pray
_ KepL
=
Ps =prLas .

It should be pointed out that K, and K; each vary within the solid/liquid zone according

to the volume fraction of liquid and the dendrite arm spacings of the dendritic network
[4].
3.4 Steady-state Solidification.

Consider a stationary coordinate (r’,2’) and a moving coordinate system (r,z) with

the velocity (w,,w;). Then a full derivative of a function f with respect to t is given by

af(r',2',t) _ af(r,2,1) 8f(r,2,t) 8f(r,z2, t)
at -~ a8t U gy W5

(3.4.1)

For steady-state, the function value on a moving frame does not change with time. Thus

we have

85(r,2,t) _

% - Vf(r,2). (3.4.2)



For our application the origin moves such that w, = 0 and w; = u;, where u, is the

solidification velocity in the g-direction, then Eqs. (3.2.15) and (3.3.7) are reduced to the

following expressions:

a1p a,  da,\ 0P 83P da, 3P
% g+ (“*'57) c')r wteem vt e (3.42)

d
= —u, [(PL Ps) P Lta ;:]
36,  da,
+ ( EP — PLo 3z ) gz

Olngr, _pr 1 dlnCp
BT T es(I-k) | T or

and

+ (Va — uz)

lnCy ] (3.4.3)

8z

Equations (3.4.2) and (3.4.3) are the pressure equation and solute redistribution equation,
respectively, for steady-state solidification.
At r = 0, we evaluate (a,/r) (9P/3r) with L’Hospital’s rule; therefore

. (e, 3P\ _8a,0P &P
i ( r ar) Br 9r g3 (3.4.4)

3.5 Boundary Conditions.

At the liquidus isotherm

If the pressure at r = 0 and at the isotherm is represented with P,, then the pressure

along the liquidus isotherm is

P = Po + pLogz(z - zLo) (3-5.1)

where g, is the component of gravity in the g-direction and pr, is the density of the
interdendritic liquid where Cr, = C,. In terms of the modified pressure P, related to by
Eq. (3.3.2), this condition becomes ‘
P=o. (3.5.2)
9




At the eutectic isotherm

Interdendritic liquid must flow to compensate for the shrinkage associated with the

golidification of the eutectic liquid. Thus,

Ve =4, (Bff"—”“i) (—tand), (3.5.3)
PLE
and
V, = —u, (M) (3.5.4)
PLE .

where 0 is the angle between the tangent to the eutectic isotherm and the horizontal line.
By combining Eqs. (3.3.5, (3.5.3) and (3.5.4), the boundary condition can be expressed in

terms of the pressure gradient at the eutectic isotherm

3P _pgL  (psE

K (p—LE - l)(“ tanf) + (oL — pLo)gr (3.5.5)
0P _pgr  (pse
ErA (m ) l) +or = prolas 359)

e =0

Since the solid/liquid gone is axisymmetric, the radial component of velocity is gero.
Ve =0.

Substitution of this equation into Eq. (3.3.4) gives

ap
55 =0. (3.5.7)

At the outer wall {r=R)

The outer wall blocks the movement of the interdendritic liquid in the r-direction.
Thus
V.=0

10



so in terms of modified pressure,

5 =0. (3.5.8)

The boundary conditions are also shown in Figs 3(a) and 3(b). Temperatures at the
eutectic and liquidus isotherms are T and T, respectively, and the axial symmetry gives

gero heat flux in the radial direction at the center, i.e. 8T'/3r = 0.

3.6 Energy Equation.

Let’s represent the enthalpy densities for the solid and the interdendrititic liquid with

@, and Q, respectively. The energy conservation, taking account of heat conduction and

convection, is

| @

+(Q+ Qi) =V - (xVT) - V(Q,V) (36.1)

QD

where & is the thermal conductivity of the mixture of the golid and liquid. The first term
on the r.h.s. of Eq. (3.6.1) is the energy transported due to conduction and the second
due to the convection of the interdendritic liquid. The enthalpy densities are related to

the enthalpy of the primary solid, H,, and the enthalpy of the interdendritic liquid, Hj,

through the equations,

Qs = psgsH, (3.6.2)
and

Qi=proHy (3.6.3)
I we define the difference in the enthalpies, L, with

L=H-TH, (3.6.4)
11



then Eq. (3.6.3) becomes
Q=prgrH, +pLo L . (3.6.5)

Substituting Eqs. (3.6.2) and (3.6.5) into Eq. (3.6.1) and expanding terms, we obtain

371' 8L  ,dpLgL
H, +27 Bt * + pLorL 5t = (3.6.6)

=V (kVT)-H,V(pr9.V) - proL V - VH,

~ LYot V) = proLV - VL

where 7 is the average density given by Eq. (3.1.2), and inserting Eqs. (3.1.1) and (3.1.2)
into Eq. (3.6.6) to eliminate V - (prgz V') terms, we obtain

oH, oL a2
6t pLgLW - LM

=—pog V- (VH,+VIL). (3.6.7)

For steady-state solidification and a moving coordinate system with velocity components
w, = 0 and w,; = u,, we can write

dT | Ok, 0T _
oo T or 95

2 2
oT  OT | & 05

Krag + R g (3.6.8)

where
dgr oL
C= “LPS“z 3z +PLgL [Vr or (V - “z)_]

0z
oH 0H,
r ar. +(PLgLVz —Fu;) 9z

Equation (3.6.8) is obtained by replacing the time derivative terms in Eq. (3.6.7) with
space derivatives via Eq. (3.4.2) and by using the assumptions of a constant solid density
and no porosity formation. The thermal conductivities in the r- and z-directions, &, and

K, are approximated with the following formulas:

1
M CTAIETI

12
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Kz 85 (1—gr)ee + grer (3.6.10)

where the thermal conductivities of the solid and the interdendritic liquid, x, and &1, are

obtained from the thermal data for the pure solids and liquids of the components of the

binary alloy:
Ko RS C“""IJ(;OC""” (3.6.11)
and
KL N C“'“LIIZOCW““ : (3.6.12)

3.7. Macrosegregation. The local average composition in a casting after complete

golidification is obtained by averaging the compositions of the primary and eutectic solids.
Therefore

Co = ps(1 — 95)Cs + psp9eCh (3.7.1)
ps(l1—gE) + psegE

The volume fraction of solid at the eutectic isotherm is (1 — gg) and replacing Cs with

Eq. (3.2.8) gives

Cs = ol—w psCsdgs + psegeCkr

ps(1—gg)+ psege

(3.7.2)

For steady-state solidification Cg is dependent on radius. Integration is performed from

the liquidus to the eutectic isotherms in the z-direction at a constant radius.

4 NUMERICAL METHODS

In directional solidification processes, it is advantageous to effect vertical solidification
with perfectly horizontal isotherms. With such a thermal field no macrosegregation across _
the ingot or casting results, and there is also liftle or no macrosegregation along the
direction of solidification. However, to maintain perfectly horizontal isotherms implies

13



no temperature gradients across the ingot or casting; this, of course, is impossible but is

approximated in practice.

The consequence of slightly curved isotherms is that there can be macrosegregation
across the casting or ingot depending upon solidification rate, the alloy, and the extent
of the concavity or convexity of the isotherms. At high solidification rates, e.g. u, >
5x 1073 ¢m - s1, a small curvature of the isotherms is expected to be insignificant, but
at low solidification rates, e.g. 10-2 < u, < 10~*cm - s~1, even slight curvatures can

profoundly affect the flow of the interdendritic liquid and, thereby, cause macrosegregation.

In the following we discuss first the numerical simulation of a rectangular mesh, which
is approximate for directional solidification (DS) with horizontal isotherms, and then we

discuss a non-rectangular mesh for adaptation to DS slightly curved isotherms.

The generation of a rectangular mesh is straightforward; however there are some
difficulties in formulating finite difference approximations for boundary points. Fig. 4(a)
shows a rectangular mesh with uniform spacings in the r- and z-directions as employed by
Kou [5]. At the curved boundaries there are special cases which require carefully written
finite difference approximations of the derivatives. Usually finite difference equations of
the second order accuracy are mostly considered, and the truncation errors involved in
the approximations are proportional to the square of the grid spacings. In order to retain
accuracy, all points including the boundary points must be expressed with the formulas
of at least the same order of the accuracy of the interior points. For irregular boundary
points, complicafed expressions are required and various formulas must be considered for
different cases. As an example, the first derivative of the function normal to the boundary

14



for point A shown in Fig. 4(a) can be expressed with values at its five nearest points and
the point itself to get the second order accuracy of the derivative. The expression must
be dependent on the distances from boundary points to a internal point closest to point
A in the r- and z-directions. It can be seen that point B must be considered in terms of

the six points shown as circles in Fig. 4(a). This kind of treatment necessitates complex

book-keeping.

To overcome the problems of the mesh of Fig. 4(a), Ridder et al.[6) employed a grid
design shown in Fig. 4(b). Vertical lines of equal spacings in the r-direction are drawn
and the horizontal lines are drawn beginning at the intersections of curved boundaries
and the vertical lines, resulting in nonuniform grid spacings in the z-direction. Additional
horizontal lines which do not cross the curved boundaries are also inserted if necessary.
This configuration gives computational efficiency and eliminates the burden of complex
book-keeping for the mesh points at the curved boundaries; however, it must be noted
that spacings in the z-directions are dependent on the selection of vertical grid lines, and
the grid spacings of consecutive mesh points may differ by as much as several order of
magnitudes depending on the geometry of the computation domain. This can adversely
affect the accuracy of the solution as well as the convergence properties of the difference

method.

4.1 Nonorthogonal Mesh.

A nonorthogonal mesh is shown in Fig. 5. Suppose that we want m intervals in the r-
direction and n intervals in the z-direction; we can start with (n — 1) equally-spaced points
at the center line, i.e., r=0. Arbitrary smooth cuves are drawn toward the outer wall of the

15



cylinder from these points. Vertical lines equidistant in the ~direction are drawn. Let’s
number the mesh points in the computational domain with two indices, i and j; i equals 1
for the points on the center line and (m+ 1) for those at r=R, and j equals 1 for the points

on the eutectic isotherm and (n + 1) for those on the liquidus isotherm. The eutectic and

liquidus isotherms are written as

25 = a[z(%)’ - (%)4] (4.1.1)
and
r\3 [ T\4
2L = b[z(ﬁ) - (E) ] +c (4.1.2)
where R is the radius of the cylinder. The coordinates of the point (1,) are
—pli-1)
rij = R (4.1.3)
and
r- . r'-’ .
%,; = (bp); [2(%)2 - (—F’)‘] + (cp)y (4.1.4)
where
-1
(tp); = a1 = 1=2) 4412 (4.15)
and
) —1
(ep)y = eI (4.1.6)
n
Also the tangent to the curve is given by
(ta00):.5 = 4(0p); 1 - ()" (41.7)
4J JR2 R sde

This simple scheme assures that the ratios of the adjacent grid spacings in the r- and
g-directions are close to unity and the curves are smooth. This is beneficial to the proper
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estimation of spatial derivatives, however, it is necessary to consider finite differece ap-
proximations that are different than coventional expressions, because the generated mesh

is nonorthogonal. A detailed description of this approximation is given later.

4.2 Generalized Finite Difference Method.

| Conventional finite difference methods divide a computatation domain into rectangu-
lar meshes by positioning mesh points along a curve parallel to either of the orthogonal
axes, and approximate spatial derivatives with several function values along the curve.
Consider the rectangular meshes of the uniform spacings in the r- and z-directions as
shown in Fig. 6(a). Central difference approximations of the first and second derivatives

of a function f at a mesh point (,7) are represented with the following relations:

of _ firni—firs

ar 2Ar

8f _ fig+r = fiy—1

dz 2Az
Af _ firrg -2+ fiorg
or? (Ar)?

Af _ firrg-1+ firrger = ficrgar + fimri
drdz 4ArAz

and

Pf _ fige1 —2fii+ fii
3273 (Az)3

The derivatives are given in terms of the grid spacings and the function values at neighbor-

ing eight points and the point itself. In matrix notation these equations may be rewritten,

(GD) = (TR) (fx) (4.2.1)
17



where

af/or
8f)dz
(@D)=| &3f/ar2 (4.2.2)
3%f/dr 8z
93§ /a3
o & . & % o0 o o s
B% @ U g% & 0 0o o o
(TR)_ _ 2.'. 6 1.0 6 1.0 0 0 0 0
0 0 0 0 0 2% 2 L& L
42.3)
and ;
[ fi
fi+1.J'\
fij+1
fi—l,j
(fv)=1 fii— (4.2.4)
fi+l,j—l
fitt.5+1
fi+1,j—1
\l'—l,j—l

where column vectors (GD) and (fy) represent the global derivatives and nodal function
values, respectively, and the (T'R) a 5 x 9 transformation matrix which makes it possible
to compute (GD) based on nodal function values. Examination of Eq. (4.2.1) shows that
the shape of the matrix (T'R) is dependent on Ar and Az. Suppose that the grid lines are
not parallel to the axes of the coordinates. Then, all the geros in Eq. (4.2.1) are expected
to changed to nonzeros. This indicates that (GD) is dependent on the locatibn of the
neighboring points. Instead of taking the center node as a reference, any of the other eight
neghboring nodes can be selected as the reference and employ forward and/or backward
differencing techniques in either of the directions.

The dependency of the (T'R) on the coordinates of the neighboring points and the

selection of the reference node has been analyzed by Kwok [7]. Each effect of the two factors
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on the matrix (TR) was obtained by considering a global coordinate and corresponding
local coordinate and the transformation between the coordinate systems. A function f(r,z)
defined in a region of a global r-z plane can be related to the simple local coordinates in the
a—f plane as shown in Fig. 7. The nine points in the local coordinates are numbered in an
arbitrary order. The coordinate (a;, 8;) in the local plane corresponds to the coordinate
(ri;2) in the global plane. Within the local curvilinear mesh, the function value for an

arbitrary point can be approximated with the following second-order polynomial:
f=0a1+ 620+ a3f + as0? + a56% + a70®P + agapf? + aea3p3 . (4.2.5)

From the equations for the nine nodal points, the coefficients in Eq. (4.2.5) are known
and then the first and second derivatives with respect to a and f are given in terms of the
coefficients and the function values, (fx). If the function in a global plane is appraximated
with a second-order truncated Taylor series expansion, the derivatives in the plane are
expressed in terms of the global coordinates of the nine points and the function values at
these points, (fy). The matrix (T'R) was obtained by combining the derivatives in the

loca.l and global planes. The relationship between (GD) and (fx) derived by Kwok [7] is,

(GD) = ((DC)(D))™ (DC) (fn) (429
where 0102 0 f 208 f° 2o
0 01 0 20 a o 208 22%8
(DC)=]0 00 2 0 0 28 0 26 |A™? (4.2.7)
000 0 0 1 2 20 4af
000 0 2 0 0 2 22
hy Kk h,/z hiky KD/2
(D) = (h’ b h”/z Mf’ k"’:/z (4.2.8)
ho ko h’/z hoke K3/2




for the central, forward as well as backward differencing schemes for various cases are

obtained simply by varying m. Other parameters are dependent on m.

Fig. 8 shows nodes located at the corners and the boundaries of the computation
domain as well as inside the domain. A represents the internal nodes as shown with solid
circles; B, C, D and E represent the nodes along the four sides forming the boundary.
There are also four corner points, F', G, H and I shown with circles. This classification is
essential to employ adequate finite difference approximations to the nodes enclosed in the

computational domain.

Table I. Coordinates in the «-f plane corresponding

to selected reference node.

Location Point Node m o, g

Internal A 1 0 0
B 2 1
Boundary C 3 0
D L -1

E 5 0 -1

F 6 1 -1

Corner | G § 7 1 1

! H | 8 -1 1

J& I i 9 -1 -1

Adequate difference schemes are obtained by varying only m. For an interior point,
a central difference formula is employed; but, for the nodes located along the boundaries
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and at the corners, a forward or backward differencing technique is used to retain the
second-order accuracy of the derivative approximations. The proper selection of m for

different cases and corresponding a and f values dependent on m are listed in Table I.

4.3 Iterative computation.

Physical properties such as viscosity, permeability, the density of the solid, and the
density of interdendritic liquid are temperature dependent. The composition of the inter-
dendritic liquid is also related to temperature by the liquidus of the phase diagram. With
temperature and volume fraction liquid in the computational domain specified, the coef-
ficients and the r.h.s. of the pressure equation (Eq. (3.4.2)) can be estimated. Then the
pressures in the domain are obtained, and the velocities, which depend upon the pressure
distribution, are computed using D’Arcy’s Law. The volume fraction of liquid is updated
to satisfy the local solute redistribution equation, and then the temperature is reestimated.

The iteration steps are performed as follows:

1. Start with a linear temperature profile in the z-direction and zero velocity. Solve for
gL.

2. Solve the pressure equation.

3. Check whether the pressure is sufficiently accurate. If the solution is accurate enough,

jump to step 7.

4. Employ D’Arcy’s Law to calculate velocity.

5. Recalculate g7, using the local solute redistribution equation.

6. Solve energy equation for temperature and then go back to step 2.
7. Terminate the loop.
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A detailed description of these steps is given in later subsections.

4.4 Evaluation of Coefficients in Pressure Equation.

The values of ay, a;, B, and f; defined by Eq. (3.3.8) vary by several orders of
magnitude in the computation domain. The derivatives of these functions are expressed

in terms of their logarithms:

aa"r' = o, lgr“' (4.4.1)

aa";' = a,algz"" (4.4.2)

aaﬂr' = ﬂ,algf 2 (4.4.3)
and

P _p, 22 (4.4.4)

Finite difference approximations were applied to the logarithms of the respective functions.

4.5 Solution of Pressure Equation.

The first and second derivatives in Eq. (3.4.3) are given by its function values at
the nine nodes according to Eq. (4.2.10). The transformation matrix in Eq. (4.2.10) is
generated for a node and then the derivatives, da,/dr, da; /82 and 34,/ 9z, are evaluated
through their logarithms as explained in the previous section. Th-e derivatives 8pr/0z
and 3¢y, /8z are also evaluated. Now the transformation matrix is utilized to form a finite
difference equation corresponding the original equation (3.4.3) for the node. The equation

for node (4, 7) can be written in the form:

9
>0l )Ai6) = 16,1) (45.)
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where
P’(i’j) = Pi+a,j+ﬂ (4.5.2)

and f(i,7) is the computed value of the right hand side of equation (3.4.3). The values of
a and 8 correspond to the m as shown in Table 1. To simplify expressions, let’s drop the

indices i and j in Eq. (4.5.1) and rewrite

9
Yab=f. (4.5.3)
I=1

The internai ﬁodes are handled with Eq. (4.5.3); however, additional considerations
must be given to the nodes located at boundaries. The conditions to be satisfied in
developing a finite difference equation are a) the maintenance of second-order accuracy in
the approximation of the pressure equation Eq. (3.4.3); b) the incorporation of the supplied
boundary condition; and c) the assurance of the stébility assembled matrix equation.

The derivative boundary conditions given at the eutectic isotherm, the center, and at

the wall of the cylinder are of concern. The finite difference expressions for the derivatives
8P /3r and 8P/dz can be written

9
%{i = Z: s By (4.5.4)

and
9
%—f = Z;t:P: ,  (45.5)

respectively, similar to Eq. (4.5.3). These equations also apply to the node (i,j). In order

to incorporate the boundary condition at r = 0, we solve Eq. (4.4.4) for B;,

hi=1(5-2ah) (459

55

1
2
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and when eliminate P; by inserting this equation into Eq. (4.5.3). Thus,

i:[a; -~ ‘;—:s,]ﬁ, _j-mdf (4.5.7)

s 83 dr °
’;"éz

The derivative boundary conditions ar r = R and at the eutectic isotherm, as shown
in Fig. 3(b), are incorporated to the finite difference Eq. (4.5.3) by following the same
procedure. When several conditions are to be incorporated, e.g. for the corner points in a
computational domain, the above procedure is repeated to generate a desired equation.
Finite difference approximations for all nodes are arranged to form a matrix equation.

I the appoximations are written in row-first order, the equation is

(4) (P) = (B), (4.5.8)

where

(P) = (PII,PI,,P,;,,,...,P,,,P”,...) (4.5.9)

and

(B):(Bll,Blg,Bl3,...,BQ],BZQ,...) . (4.5.10)

For a computational domain discretized with five intervals in the r-direction and five inter-
vals in the z-direction, the shape of matrix (A) would be represented as shown in Fig. 9.
It was not possible to determine the stability of the matrix equation (4.5.8); however,

our test runs showed that (A) satisfies diagonal dominance, a sufficient condition for the

stability of a matrix equation.
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The Gauss-Seidel method is used to solve the matrix equation. For the five-point
difference formula typically used for a rectangular computational domain, the function
values at node (i,j) is updated at each iteration using the values at (s — 1,7), (§ + 1,7),
(1,7 — 1) and (5,7 + 1). In addition the generalized finite difference method uses function

values at four corner nodes; their contributions are considered to be relatively insignificant.

4.6 Computation of velocities.

After solving the pressure equation, the components of velocity, V, and V;, are com-
puted from Eqs. (3.3.4) and (3.3.5), respectively. However, from a numerical point-of-view,
there is a difficulty in calculating an accurate value of 3P /0z. Fig. 10 shows a typical plot
of —3P [0z and —(pL — pLo) 95 in the z-direction. The difference of the two values is quite
small compared with their values. If the value of —3P/dz is slightly overestimated, e.g.
five percent larger, the dotted line may lie above the solid line, leading to a velocity of
opposite sign, and multiplication with a large coeﬁicienf, K./(ugr) in Eq. (3.3.5), greatly
magnifies the error. In fact this happened when the derivative was estimated from the
usual second order finite difference formulae. Even the sign of the velocities were reversely
occasionally. This was tested against an analytical solution available for unidirectional
golidification.

To overcome this problem interpolation formulas were developed. A schematic plot of
D along the z-direction, shown in Fig. 10, indicates that special consideration is mandatory
due to a rapid change of P. Data points represented with the coordinates (21, P,), (23, P2),

.+, (2n, B,) may be expressed with a polynomial

P= ,.2_:1 C; 2 (4.6.1)

s=0
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where Gy, C1,Cy,...,Cq_; are the coefficients which can be readily obtained. Then the

derivative is given by

n—1
%g = Z iC; 2! (4.6.2)

=1

The value of the derivative was estimated with areasonable accuracy from this equation.

4.7 Quadratic Interpolation.

A curve crossing three points (z, f1), (za, f2) and (z3, f3) can be interpolated by a

quadratic equation,

f=a?+bz+¢ (4.7.1)

with the coefficients a, b and ¢ given by

_fizaz + faza1 + fazia

a= (4.7.2)
T12Z23Z3)
b= f1z23(z3 + 23) + faz31(z3 + 21) + fazia(z1 + 23) (4.7.3)
T13T23%31
and
c= _ f1223%2%3 + f22312123 4 f32132123 (4.7.4)
T12T23Z31 o
where

Z13 =71 — T2y T3 = T3~ T3; 231 =ZT3— 21 .

When the relationship between z and f is given with a table of discrete points, it is neces-
sary to employ an interpolation to obtain values of the function at a specified coordinate.

Hence, this interpolation is used to improve the estimation of a function.

4.8 Estimation of Volame Fraction Liquid.
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Eq. (3.4.4) may be written

Ol gr
= (4.8.1)
where
_pr_ 1 [V, omC Vi 3Gy
"‘psu_k)[; o T, V% (48.2)

By integrating Eq. (4.8.1) setting the lower bound of the integration to z = 2z, g1 = 1,

we obtain

x
Ingy, = / gdz . (4.8.3)

Fig. 11 shows a typical plot of the variation of the integrand along the z-direction. The
solid dots correspond to the mesh points located along the line of a constant radius. The
quadratic interpolation discussed in previous subsection had to be developed and employed.
The solid dots are connected through a smooth curve following the interpolation using three

nearest neighboring points, and then integration was performed. The area shown in Fig. 11

is used to evaluate the integral of Eq. (4.8.3) and to obtain gr.

4.9 Temperature Calculation.

The boundary conditions applied to the solution of the energy equation (3.6.8) are
shown in Fig. 3(b). The eutectic and liquidus isotherms are maintained at T and Ty,
respectively. At the center of the ingot the thermal gradient in the radial direction is
zero due to axial symmetry. At the wall of the ingot, a proper boundary condition is not
indicated. For this report, we apply a spe.cial treatment to the points along the wall.

The radial component of the interdendritic velocity, V;, is zero at the boundary. Thus,
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the energy equation becomes

2T 5T (K,, an,) oT | 0, OT (4.9.1)

e TRt \ Tt ) art ez 02

aH,
dz

d oL
= —Ll’suz% —prgr(uz — Vz)—a'; — (s — pLoLV:)

Because we are primarily interested in subtle radial gradient, we ignore radial conduction

terms and keep only those in the z-direction; thus we approximate the behavior along the

wall with
9T Ok, 0T
*: 523 T Bz 9z (492)
0 oL oH,
= "’LPSuz ag: - pLgL(uz - Vz)g; - (puz - PLgLVz) 37

4.10 Macrosegregation Calculation.

Refer o the plot of C§ versus gg in the z-direction shown in Fig. 12. Solid dots
correspond to calculated results at mesh points. As gs goes to zero, the dots are more
sparsely distributed. Estimation of the local average composition after complete solidifica-
tion requires the estimation of the area in Fig. 12 according to Eq. (3.7.2). Again a smooth
curve connecting the dots is drawn according to the quadratic interpolation. A nuinerical
integration for the area under the curve gives the average concentration of solute in the

primary phase after solidification is complete.

4.11 Termination of iterations.
It is necessary to predict whether the current solution is sufficiently accurate. Repre-
sent the calculated P for a point (4, 7) at the nth iteration level with P,-(,';-). The stopping
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criterion employed is

mo ()’
< € (4.11.1)

\ ol ( P;E'}’) 7

where ¢, is the tolerance measured in relative error. The summation is done for all mesh

points. The residual es,';-“) computed at the (n+ 1)th iteration corresponds to IA’,(,';) This

value is used to update P estimated at the previous iteration, i.e.
1 1
Pintt) = pln) 4 gfntt) (4.11.2)

When Eq. (4.11.1) is satisfied, the iterations are stopped. After the first iteration, however,
the next is done without checking the condition (4.11.1). A maximum number of iteration

is also specified to prevent from accidental infinite looping of the iterations.

5 EMPLOYING THE CODE

The program was written primarily to investigate the effect of a very small deviation

from horizontal liquidus and eutectic isotherms on the macrosegregation of Pb-Sn alloys
for solidification rates ranging from 10~2 to 10~* cm-s~!. It is absolutely important to use
adequate data for the density of solid, the density of interdendritic liquid, permeability,
viscosity, dendrite arm spacing, thermal conductivities of solid .and interdendritic liquid,
phase diagram, and enthalpies of the solid and the interdendritic liquid. Data for the
Pb-Sn alloys are presented in the APPENDIX. Other binary alloys can be processed by
replacing thermal property data, and similar geometries of solid/liquid zone, consistent
with tWo-dimensional (r,2) cylindrical coordinates, can be processed by modifying the
grid generation procedure. The program was written in TURBO PASCAL v3.0 (Borland
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International, CA) to run with a PC-DOS operating system. Graphics routines were
developed using TURBO GRAPHIX V1.0 (Borland International, CA). This program can
be run with IBM PC, XT, AT computers or compatibles with IBM-compatible graphics
adaptor or a Hercules monochrome graphics card. A dot-matrix printer is necessary to get
hardcopies of plots displayed on screen. For higher speed computations, installation of the

8087 (80287 for AT machines) math coprocessor is recommended.

5.1 Program Options (Menus).

When execution of this program is requested, a menu is displayed on the screen and
instructs the operator to make a selection. This menu is reproduced as Fig. 13. A brief
description of each option is given below.

0: Concise description of the program is diéplayed on screen. This can be sent to
printer by pressing Shift-PrtSc key.

1: Requests the operator to enter the name of the input and output data filenames.
Currently PB-SN.DAT is the only file which can be accessed. After execution of
this option, the name of the files and the message ” NO resulis yet” are displyed
on the screen (Fig. 14). |

2: The data read from the parameter file is displyed on the screen (Fig. 15). The
operator can modify any of these parameters or get a hardcopy of the data. The
definitions of the parameters are given below:

C) : weight percent Sn.
R, a, b, zo : geometry of the solid/liquid sone (Fig. 5).
u, : solidification rate, cm-s™1,
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hzref :

tol :

maxitr :

kmodel

mmax:

nmax

ENERGY

DEBUG :

DEVICE :

ratio of the adjacent grid spacings in the z-direction. The grid spacings
can be gradually reduced by setting it to a value less than unity.

Recommended value ranges from 0.8 to 1.0.
tolerance allowed given in terms of relative error.

maximum number of iterations.

: permeability model. Several permeability models will be implemented

in future versions; however, there is currently only one option avail-

able.

number of subintervals in the r-direction for the mesh.

: number of subintervals in the z-direction for the mesh.

: Energy equation may be solved (ENERGY=1) or the temperature

variation along the g-direction is assumed to be linear (ENERGY=0).
Intermediate results are displayed on the screen or printer if this vari-
able is not zero. This feature was used to facilitate program debug-
ging.

Intermediate results can be displayed oﬁ the screen (DEVICE=0) or

sent to the printer (DEVICE=1). Thisfeature is also used for program

debugging.

3: Now, we return to Fig. 13. The data updated by selecting option 2 is overwritten

to the parameter file.

4: The operator can switch to other input and output paramete files for the program

run. This option would be useful when the program is extended to process
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various binary alloys.
5: Program is run and intermediate and final results are stored as digk files.

6: Final results are displayed on the screen. Also hardcopies of these results may
be obtained.

7: Exit to the operating system (DOS).

5.2 Output.

The results obtained with the parameters displayed on Fig. 15 are shown in Fig. 16.
The effects of solidification process parameters on macrosegregation are under analysis.
Here the intent is to merely acquaint the reader with the mechanics of using the program.

Fig. 16(a) shows the mesh and the velocity vectors of the interdendritic liquid. The
center of the ingot (r=0) is to the left, and the wall (r=R) is to the right. Notice that the
isotherms, Fig. 16(b), are slightly convex so the less dense interdendritic liquid, enriched
in Sn, flows toward the center. Fig. 16(c) gives the temperature along the center-line and
along the surface. For this example, it is almost linear, but at greater solidification ve-
locities the deviation from linearity is more noticeable. The outputs likely to be of most
interest to the users of this program, are shown in Figs. 16(d) and (e) for the concentration
of Sn and volume fraction of eutectic, respectively. Consistent with the flow of the inter-
dendritic liquid, Fig. 16(a), the amount of eutectic and the composition increase from the

wall to the center. Finally, other characteristics of the mushy zone are given by Figs. 16(f)

through 16(h).




[y

w

[=2]

-3

10

11

12

13

14

REFERENCES

. M. C. Flemings and G. E. Nereo: Trans. TMS-AIME, 1967, vol. 239, pp. 1449-61.
. A. L. Maples and D. R. Poirier: Metall. Trans., ,1984, vol. 5B, pp. 163-172.

. M. K. Hubbert: Petroleum Trans., AIME, 1956, vol. 236, pp. 222-239.

. D. R. Poirier: Metall. Trans. B, 1987, vol. 18B, pp. 245-255.

. S. Kou: Ph.D. Thesis, Massachusetts Institute of Technology, 1978.

. S. D. Ridder, S. Kou and R. Mehrabian: Metall. Trans. B, 1981, vol. 12B, pp.
435-447.

. S. K. Kwok: Computational Techniques and Applications, CTAC-83, Ed. by J. Noye

& C. Fletcher, Elsevier Science Publishing, North-Holland, 1984, pp. 173-181.
. D. R. Poirier: submitted for publication.
. H. J. Fecht and J. H. Perepezko: Metall. Trans. A, vol. 19A, to be published.

. H. R. Thresh, A. F. Crawley and D. W. G. White: Trans. Met. Soc. AIME, 1968, vol.
242, pp. 819-822.

. W. D. Drotning: High Temp. Sci., 1979, vol. 11, pp. 265-276.

. A. E. Schwaneke, W. L. Falke and V. R. Miller:- J. Chem. Eng. Data, 1978, vol. 23,
pp. 298-301.

. H. R. Thresh and A. F. Crawley: Metall. Trans. 1970, vol. 1, pp. 1531-35.

. Metals Handbook, 8th edition, vol. 1, Americal Society for Metals, Metals Park, Ohio,

1961, pp. 1064 and 1144.

15. J. T. Mason, J. D. Verhoeven and R. Trivedi: J. of Crystal Growth, 1982, vol. 59,

pp. 516-524.




16. E. A. Brandes (ed.): Smithells Metals Reference Book, 6th ed., Butterworths, London,
1983, pp. 14-1 to 14-2.

17. D. R. Poirier and P. Nandapurkar: submitted for publication.

35



|

|

. LIQUID

|
LIQUIDUS

i S/L
- ZONE
- |

-
EUTECTIC

I
SOLID l'é

Fig. 1 Vertical solidification of melt in
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Fig. 2 Formulation of flow equations.
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Fig. 4 Rectangular meshes
(a) uniform spacings in both directions
(b) uniform spacings in the r-direction,
but adjusted nununiform spacings in the
z-direction.
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Fig. 6 Finite difference formulations for
(a) an orthogonal rectangular mesh, and
(b) a nonorthogonal irregular mesh.
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Fig. 7 Curvilinear nine-point mesh in
(a) global r-z plane, and
(b) Tocal «-g plane at node i.
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Fig. 8 Classification of mesh points in
computation domain;

: internal
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Fig. 9 The shape of matrix A.
nonzero elements,
x : c]ements reduced to zero by incorporating
derivative boundary conditions.
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Fig. 10 - Comparison of -3P/3z and -{P-Po) 92



slng /5z

g, = exp(-area)

Fig. 11 Estimation of volume fraction Tiquid by
integration. Solid dots correspond to
mesh points. .
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0.0

Fig. 12 Plot of Cg versus g_ in the z-direction.

- :

Solid dots correspond-to mesh points.
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@. Display background information
1. Read input parameters

2. Modify input parameters

Z. Save updated parameters

4. Goto other parameter file

5. Run program

6. Flot final resulte

7. Gult

MO parameter data esrists.

INFUT  FILEMHAME
OUTFUT FILEMAME

Enter your cselection :

Fig. 13 Menu displayed on screen at the baginning of
program run,
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—————————————————— N

B. Display background information
1. Read input parameters

2. Modify input parameters

J. Save updated parameters

4. Goto other parameter file

5. Fun program

6. PFlot final results

7. Guit

MO resulte yet.

INFUT FILENMAME : pb-e=n.dat
NDUTFUT FILENAME : mB%

Enter your selection :

Fig. 14 Menu displayed on screen after selection of
menu "1", and input and output filenames.
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b.
7.
8.
9.
1a.
11.
12,
12,
14.

15.

FARAMETER DATA

ol

Uz
hzref
tol
maxitr
kmodel
Mmmnax
nMma
ENERGY
DERUG
DEVICE

FARAMETER FILE

Changed

Fig. 15

2 tim

=]

=

1.0000
-0.Z000
—-0. 000

S5.0000

4. 0Be-804
1. 0QE+000
1.080E-BB6
13
1

8
(]
1
1
4]

pb—-=n.dat

1" 2"

Uhich one™

(1 to 15)

Enter @ to stop changing.

Enter

is selected.

15 to print

can change the input parameters.
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Display of the data read from parameter
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(o)

(c)

ORIGINAL PAGE IS
OF POOR QUALITY

eeceeran e, Gerrrnnnen e reeeens :

- » ¥ ST TI M

,-. v d ] Proreennn.. PIT I
[T ‘ .......... < pes i .

B b A s 1 EAPERATURES CONTOURasets «

T

€8 = 13.0 wt.pct.
Unax/l!z‘ 6,91E-081
= 8.0084 cw's
R = 1.808 c»
zlo = 5.608 cn
a = -8.309
b» = -8.308
Hant Hardcopy:

TEMPEFATURES, C

a»rﬂ— S AR L E R

= TEMPERATIREZPROFI LEXTNATHE: 2= DERECT 1ON -5

. LINEAR
: SOLYED

Hant Hardcopy:

v
, Lee .
] e
¢ Y=o =
i e
Q 9.591 pl -‘__‘ . ‘r.____R
|': gty .
9 Bg =z T T T T }
8. 99 8.28 8.49 a.69 8.40
(3-ZE)/(7L-2E) Want hardcopy (Y/M) :
Fig. 16 Output obtained from the parameters shown
in Fig. 14.
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ORIGINAL PAGE IS
OF POOR QUALITY

[

Wb

Aot S o4 COMPOS FTIONS PROF T LEKE 50 s e

= i gkt I Uy e,
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e 1.70]
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(d) 1.50]
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3
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8.98

Fig. 16 (continued.)
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(f)

(g)

(h)

8.68

8.408

8.20 4

ORIGINAL PAGE 1S
OF POOR QUALITY

s

8.80
Hant hardcopy (Y/N)

8.40 8.68
(Z-7E)/(7ZL-7E)

-

16 2 A
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L
\ 9.30
.’ \—‘\
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Fig. 16

(continued.)
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APPENDIX - DATA FOR PB-SN ALLOY

A.1 Density of Solid.
pse (density of eutectic solid) = 8.366 g/cm®

ps (average density of solid) = 11.340 — 0.05898 C, — 0.001273 T

The density of the solid (lead-rich « phase) is determined by Poirier [8] using lattice

parameters reported by Fecht and Perepezko [9].

A.2 Density of Liquid.
pr e (density of eutectic liquid) = 7.928 g/cm®

pr = 10.559 — 0.04251 Cj,

The density of interdendritic liquid is presented as a function of Cy, by Poirier (8] based

upon reported [10,11,12].

A.3 Viscosity.

p = 0.026 poise (g-s~! - em™1)

Thresh and Crawley [13] measured the viscosities of Pb-Sn melts and extrapolated their
results to the liquidus temperatures. They found that these viscosites are almost constant;

thus an average value is used here.
A .4 Phase Diagram.

Sufficient number of points were taken from the liquidus and solidus curves of the

Pb-Sn equilibrium phase diagram [14] (Fig. A1) and fitted to polynomials. Cz and k are

K4




given by,

CL = 61.656 — 41.496 = — 54.929 z? + 34.872 z°

and
k = 0.301 + 0.200 z — 0.443 z2 4 0.73 z°
where
285 (T - Te)/(Th - Tk)
Tg = 183 °C
Ty = 327.5 °C
and

Cg = 61.9 wt. pct. Sn.

A.5 Primary Dendrite Arm Spacing,.
dl =584 G;0.303

where d; i8 in pm, and G, in °C - cm~!. Mason et al. [15] showed that primary dendrite
arm apacings of dendrites in Pb-Sn alloys of various compositions. At low solidification
rates of our interest, the dependency of d; on the solidification rate is smaﬂ. Their results
also indicate a weak dependency of d; on alloy composition. The empirical formula is for
Pb-40 Sn alloy and a solidification rate of 102 cm - s~1; however, the actual dendrite arm

spacing is expected to be accurate within 10 % .

A.8 Permeability of interdendritic liquid.

-
na



Poirier [4] modelled the flow of the interdendritic liquid with Hagen-Poiseuille law and

estimated the relationship based on available data.

A.7 Thermal Conductivity.
The thermal conductivities of pure Pb and of Sn in the liquid and solid states, as
functions of temperature, are taken from Brandes [16] and extrapolated to the temperature

range, 183 °C ~ 327.5 °C as necessary. (See Fig. A2).
K, (Pb) = 0.318 — 1.85 x 10™* (T — T%)

ki (Pb) = 0.130 + 1.64 x 10~* (T — T%)

Ks (Sn) = 0.605 — 2.99 x 10~* (T — Tg)

K1 (Sn) = 0.290 + 2.01 x 10~* (T - Tg)
The units of these conductivities are in watt - cm=! - °C~1,

A.8 Enthalpy.

Hy =—-4.788 4+ 0.13868 T + 0.97811 Cs

~1.0332%x 102 T;7 +1.0440 x 103 T, T Joule/g

Hy, = 63.772 4+ 0.72996 Cy, — 7.1156 x 10 =2 C3

+3.714T%x 107% C2 —4.7423x 1077 Cf  Joule/g

Poirier and Nandapurkar [17] evaluated the enthalpies of the dendritic solid and inter-
dendritic liquid of Pb-Sn alloys and found that they are appreciably dependent on alloy

composition. These dependencies were expressed in polynomials reproduced here.

"



ORIGINAL PAGE IS
OF POOR QUALITY

Atommic Percentage Tin

°C
400 l'O 2'0 ..30 49 5'0 69 7'0 80 9'0
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100 ¢
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Weight Percentage Tin

Fig. Al The Pb-Sn equilibrium phase diagram {14].
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THERMAL CONDUCTIVITY, W/CM-"C

o
(o))
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—
N

0.0

ORIGINAL PAGE IS
OF POOR QUALITY

~3n(s)
o Pb(s) E E gnk\\ x
T——o ' ' x/
| \h‘_’><;‘f/ o
: : - Pl 4
: ! _—+
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T,-183°C | | T,=327.5C |
N | 1 . 1 1 1
200 400 600

TEMPERATURE, °C

Fig. A2 Thermal conductivities of Pb and Sn in the solid

and liquid states [161.
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